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Overview:

We present a novel ensemble model compression framework for simultaneously training multiple compressed
models using an online knowledge distillation-based scheme.

1.

2. Major highlights of our work include:

a) Pre-trained teacher free and model architecture agnostic approach.
b) Facilitates simultaneous training of multiple instances of a given architecture compressed to varying degrees.

c) Significant training time savings over individually training each model.
d) Consistent performance gains for all compressed models over their baseline individual training.
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=P VEIn Rl Knowledge Distillation is the process of distilling knowledge (specifically output softmax distribution) of a
pre-trained teacher model onto another model called a student.
Ensemble Knowledge Distillation represents distillation of knowledge from an ensemble teacher to each of
its ensemble students.
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Overview of our model compression framework for a 3-student ensemble:
1. Each student is composed of the base block and one of the network branches on top of it.

2. The original model is the first student in the ensemble, termed as pseudo teacher. The ensemble teacher is a weighted
combination of all student's output logits.

The layer channels for the compressed student branches are reduced by a specific ratio (here M, 2M/3, M/3) with
respect to the original model’s M channels.
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Simultaneous multi-compressed ensemble model training
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1] Traditional Cross Entropy Loss
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Simultaneous multi-compressed ensemble model training
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Simultaneous multi-compressed ensemble model training
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Simultaneous multi-compressed ensemble model training
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EEEV'ZU Consistent performance gains for all models over their baseline individual training

Table 2: Individual Test Set performance comparison for five compressed students
trained using our ensemble and using baseline training on CIFAR10 dataset. Reported

results are averaged over five individual experimental runs.

Classification Student Test Accuracy (%)
Model First Second Third Fourth Fifth
Baseline| Ensemble|Baseline| Ensemble| Baseline| Ensemble| Baseline| Ensemble| Baseline| Ensemble

Resnet20 [17 91.34 92.13 91.12 92.18 90.89 91.78 90.16 91.45 89.67 91.03
Resnetd2 [17 92.12 | 92,95 | 91.94 92.76 91.56 92.45 91.07 | 92.11 90.47 91.78
Resnetd4 [17 92.94 | 93.45 | 92.67 | 93.29 92.24 93.11 91.97 | 92.89 | 91.23 92.56
Resnet110 [17] 93.51 94.24 | 93.25 94.18 93.11 93.98 92.86 | 93.57 | 92.27 93.28
Densenet-BC (k=12)[20]] 94.02 | 94.76 | 93.78 94.51 93.52 94.29 93.24 | 94.08 | 92.85 93.57
ResNext50 (32 x 4d)[11]| 95.78 | 96.03 | 9556 | 95.95 | 95.27 | 95.84 | 9509 | 95.69 | 04.97 | 95.47
EfficientNet-B0[10 97.82 | 98.20 | 97.58 98.13 97.28 98.01 97.04 | 97.84 | 96.73 97.57
EfficientNet-B2[10) 98.21 98.41 98.13 98.35 97.99 98.23 97.77 | 98.02 | 97.41 97.88
EfficientNet-B4 [10] 98.56 | 98.70 | 98.36 98.59 98.21 98.47 | 98.04 | 98.23 | 97.92 98.14

Table 3: Individual Test Set performance comparison for five compressed students
trained using our ensemble and using baseline training on CIFAR100. Reported results
are averaged over five individual experimental runs.

Classification Student Test Accuracy (%)
Model First Second Third Fourth Fifth
Baseline| Ensemble| Baseline| Ensemble| Baseline| Ensemble| Baseline| Ensemble| Baseline| Ensemble

Resnet32 [17 70.21 70.97 67.87 68.24 6417 65.67 61.85 61.17 39.12 42.17
Resnetdd |17 71.12 T1.76 68.42 69.12 65.69 67.04 62.31 62.87 40.82 43.11
Resnel56 |17 71.59 | 72.16 | 68.45 | 68.39 65.37 | 66.21 | 62.42 | 62.21 41.19 | 43.27
Resnet110 [ 7] 72.64 72.81 69.53 70.14 67.12 67.73 64.58 65.08 42.26 46.76
Densenet-BC (k=12)[20]| 75.79 75.96 T1.97 72.39 70.23 70.09 67.13 68.14 45.41 49.12
ResNeXt50 (32 x Ad)[11]| 72.37 | 72.59 | 70.19 | 70.32 | 67.02 | 67.81 | 65.19 | 65.72 | 42.82 | 45.29
EfficientNet-B0[10 8717 | 88,12 | 8578 | 86.94 | 83.25 | 85.14 | 80.24 | 83.21 76.35 | T78.45
EfficientNet-DB2[10 89.056 89.31 87.34 BB.T8 85.23 8T7.58 82.14 84.13 79.34 81.12
EfficientNet-134 [10] 90.26 90.81 88.59 B89.T8 86.34 88.04 84.32 86.78 81.34 84.10

17 : He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770-778 (2016)
20 : Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4700-4708 (2017)
40 :Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)
41 : Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1492-1500 (2017)
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Table 5: Individual Test Set performance comparison for five compressed students Table 6: Individual Test Set performance comparison for five compressed students
trained Using our e_nse.m.ble and using baseline training on SVHN. Reported results are trained using our ensemble and using baseline training on ImageNet (Top-1 accuracy).
averaged over five individual experimental runs. Reported results are averaged over five individual experimental runs.

Clas;:fg:;: ton First Socon dStudent 'I‘es;h;?:curacy (%)Fou ih Fifih Classification Student Test Accuracy (Top-1 accuracy %)
Baseline| Ensemble| Baseline| Ensemble| Baseline| Ensemble| Baseline| Ensemble| Baseline| Ensemble Model . Frirst .Second _ Third -Fourth _ Fifth
Resnct20 117 96.61 | 97.10 | 95.03 96.92 9145 | 95.53 | 92.12 92.03 20.58 92.67 Baseline| Ensemble| Baseline| Ensemble| Baseline|insemble| Baseline| Ensemble | Baseline| insemble
Resnet3?2 (17 96.78 06.92 95.67 96.31 94.85 94.61 092,78 95.03 90.75 92.80 Resnetl8 |17 69.73 70.47 67.27 67.61 62.98 64.88 59.47 61.17 55.23 58.52
Resnet110 [| ,] 97.64 97.87 96.61 97.84 05.83 06.81 03.73 95.90 91.77 93.7T8 Resneth0 [17 76.18 76.52 75.43 75.32 70.16 71.93 66.89 69.46 62.24 66.78
Densenct-BC (k=12)[20]] 97.92 | 98.08 | 97.31 | 98.02 | 96.12 | 97.59 | 94.58 | 94.25 | 92.156 | 94.17 Resnet 101 [17] 7731 | T7.97 | 76.27 | 76.71 | 7349 | 74.04 | 6947 | 71.10 | 65.79 | 68.57
ResNext50 (32 x 4d)[11]] 97.65 | 97.88 | 96.84 | 96.69 | 9572 | 96.64 | 94.79 | 04.23 | 91.73 | 93.80 Densenet-121[20] 74.96 | 75.82 | 73.94 | 74.17 | 68.53 | 6844 | 66.64 | 67.83 | 63.42 | 66.09
EfficientNet-BO[ 10 97.53 | 97.72 | 97.07 | 97.79 | 9552 | 96.71 | 94.44 | 94.26 | 91.12 | 93.34 ResNext50 (32 x 4d)[11]| 77.58 | 78.19 | 76.62 | 77.85 | 73.45 | 73.37 | 69.73 | 70.89 | 65.82 | 68.48
EfficientNet-B2[10 97.75 97.92 | 97.76 097.63 095.87 96.92 03.37 96.24 | 91.42 91.29
EfficientNet-B4 [10] 98.16 | 98.56 | 97.79 | 98.03 | 96.71 | 96.48 93.64 | 96.83 | 91.75 | 94.17

17 : He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770-778 (2016)

20 : Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4700-4708 (2017)

40 :Tan, M., Le, Q.V.: Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 (2019)

41 : Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1492-1500 (2017)
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Table 4: Comparison of notable knowledge distillation and ensemble based techniques
with our ensemble teacher reported test accuracy performance (Error rate %). The
best performing model accuracy is chosen for DML.

Ensemble Dataset
Technique CIFAR10D CIFAR100 SVHN ImageNet
ResNet-32| ResNet-110) ResNet-32|ResNet-110{ ResNet-32| ResNet-110| Resnet- 18| ResNe X t-50
KD-ONE [16)] 5.99 5.17 26.61 21.62 1.83 1.76 29.45 21.85
DML [13] - - 20.03 24.10 — — - —
Snopshot Ensemble [19] — 5.32 27.12 24.19 — 1.63 — -
Ours 5.73 4.85 26.09 21.14 1.97 1.61 29.34 21.17

19 : Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.: Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109 (2017)
43 :Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4320-4328 (2018)
46 : Zhu, X., Gong, S., et al.: Knowledge distillation by on-the-fly native ensemble. In: Advances in neural information processing systems. pp. 75177527 (2018)
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Pseudo Teacher Grad CAM Baseline Student Grad CAM Ensemble Student Grad CAM

Fig.3: Gradient Class Activation Mapping (Grad CAM) [32] comparison of a
EfficientNet-B4 based ensemble pseudo teacher and one of its compressed students
with that of its respective individually trained student. The ensemble student’s CAM
is more accurate compared to that of baseline student. Also the former follows the
pseudo teacher more closely as compared to the latter, which provides evidence of the
effective knowledge distillation taking place in our ensemble framework.
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Conclusion:

1. We present a novel model compression technique using an ensemble knowledge distillation

2.

learning procedure without requiring the need of any pretrained weights.

It manages to provide multiple efficient versions of a given model, compressed to varying
degree without making any major manual architecture changes on the user’s part.

Comprehensive experiments conducted using a variety of current state-of-the-art classification
models and academic datasets provide substantial evidence of the framework’s effectiveness.

Substantial training time gains are achieved using our framework compared to individual model
training either sequentially or in parallel.
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