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Overview:

1. We present a novel ensemble model compression framework for simultaneously training multiple compressed
models using an online knowledge distillation-based scheme.

2. Major highlights of our work include:

a) Pre-trained teacher free and model architecture agnostic approach.
b) Facilitates simultaneous training of multiple instances of a given architecture compressed to varying degrees.
c) Significant training time savings over individually training each model.
d) Consistent performance gains for all compressed models over their baseline individual training.



Knowledge Distillation and its Ensemble Model Configuration

Knowledge Distillation is the process of distilling knowledge (specifically output softmax distribution) of a 
pre-trained teacher model onto another model called a student.
Ensemble Knowledge Distillation represents distillation of knowledge from an ensemble teacher to each of
its ensemble students.
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Pre-trained teacher free and Model architecture agnostic approach

Overview of our model compression framework for a 3-student ensemble:
1. Each student is composed of the base block and one of the network branches on top of it.
2. The original model is the first student in the ensemble, termed as pseudo teacher. The ensemble teacher is a weighted

combination of all student's output logits.
3. The layer channels for the compressed student branches are reduced by a specific ratio (here M, 2M/3, M/3) with

respect to the original model’s M channels.



Simultaneous multi-compressed ensemble model training

We incorporate a combination of three separate losses which facilitates final output distribution and intermediate
layer knowledge Distillation from pseudo teacher to each ensemble student

1] Traditional Cross Entropy Loss

i, j, k   :  Student, Batch, Class Index
Xijk :  Respective Student SoftMax Output

:  One hot label Indicator
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Simultaneous multi-compressed ensemble model training

2] Knowledge Distillation Loss

i, j, k   : Student, Batch, Class Index
Xijk : Respective Student SoftMax Output
XT

jk :  Ensemble Teacher SoftMax Output
T         :  SoftMax Softening Temperature

Knowledge Distillation Loss Computation
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Simultaneous multi-compressed ensemble model training

3] Intermediate Loss

m, l :   Batch, Student Index
:   Feature map of size H x W x C corresponding to student 1 and batch sample m
:   Pseudo Teacher feature map for batch sample m

b       :   Student Layer Block Index

Student Channel Adaptation Technique Intermediate Loss Computation
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Simultaneous multi-compressed ensemble model training

4] Overall Loss

Contribution ratio values found through ablation studies
α = 0.7
β = 0.15
γ = 0.15

Overall Loss Computation
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Consistent performance gains for all models over their baseline individual training
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Ensemble Teacher performance comparison with other literature methods
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Training time savings over training each student model either sequentially or in parallel



Effective Knowledge Distillation property of our ensemble framework



Conclusion:

1. We present a novel model compression technique using an ensemble knowledge distillation
learning procedure without requiring the need of any pretrained weights.

2. It manages to provide multiple efficient versions of a given model, compressed to varying
degree without making any major manual architecture changes on the user’s part.

3. Comprehensive experiments conducted using a variety of current state-of-the-art classification
models and academic datasets provide substantial evidence of the framework’s effectiveness.

4. Substantial training time gains are achieved using our framework compared to individual model
training either sequentially or in parallel.
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